If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-120=0
a = 10; b = 0; c = -120;
Δ = b2-4ac
Δ = 02-4·10·(-120)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{3}}{2*10}=\frac{0-40\sqrt{3}}{20} =-\frac{40\sqrt{3}}{20} =-2\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{3}}{2*10}=\frac{0+40\sqrt{3}}{20} =\frac{40\sqrt{3}}{20} =2\sqrt{3} $
| x³+4x²=7x-10 | | (2x^2-5x+2)(2x^2+7x+2)=-20x^2 | | N-7=√3n-21 | | -0.01x+630.0=600 | | 2=5+r/5 | | 2h^2=0 | | 4r-17r=26 | | x^2-7-30=0 | | (8+8h+2h^2)-3=0 | | k+3/3=8/k-2 | | 45/4x-15=5 | | x/13=-27 | | 3(4+1)+2(1-5x)=+x | | (x+1)^4=0 | | 0=1x-1x | | ½x=7 | | 9*(x-4)=18+3*(x+10) | | (X^2-6x+5)/(2x-2)=0 | | 4c+2/5=2 | | 3x-10x+x=-14 | | (5y+7)-(3+4y)=8 | | x+(x-4.5)=49 | | 23*x+4=57 | | (2x*2x*2x*2x*2x)+(9x*9x*9x*9x)+(16x*16x*16X)+(14x*14x)+6x+1=0 | | -5+2r=1 | | 3(x-1)=4x+6 | | (2x-1)/5=4 | | -59=-10+7r | | 3x-4(8/15x)=x | | 9-4/9x=3 | | 6+5(a-1)=36 | | 4t-5=5t+20 |